AH Computing Science – Software Design & Development

	Student Name:
	

	Outcome
	Assessment Standards
	Making Assessment Judgements
	Commentary on assessment judgements

	1
Explain how well-structured, complex modular programs work, drawing on understanding of programming constructs, algorithms and data integration by:
	1.1
Describing the purpose of a range of structured data types
	Candidate reaches the standard when they correctly describe the purpose of one of the following structured data types:

· record

· linked list

· queue

· stack

· 2-D array

· arrays of records

· arrays of objects

in terms of how the data is structured and when it is most appropriate for it to be used.
	Candidate correctly completes the question-based Task 1a) and 1b) to meet Assessment Standard 1.1.

	
	1.2
Describing how a range of complex standard algorithms work
	Candidate correctly describes how one of the following complex standard algorithm works:

•
sort algorithm

•
binary search
	Candidate uses internal commentary of their programming task (Task 2) to meet Assessment Standard 1.2.

	
	1.3
Describing the purpose of a range of programming constructs and how they work
	Candidate reaches the standard when they correctly describe the purpose of recursion and how it works within the context of a program.
	Candidate correctly answers Task 3(b) step 1 to meet Assessment Standard 1.3.

	2
Develop well-structured, complex modular programs by:
	2.1
Selecting and using combinations of programming constructs and standard algorithms

	Candidate develops one or more program(s) which include the following:

· subprograms with parameter passing

· at least one complex standard algorithm (for example, sort algorithm, binary search)

· at least one structured data type (for example, record, linked list, queue, stack 2-D array, arrays of records, arrays of objects)

· reading and/or writing data to a file or database
	Candidate successfully completes the programming task (Task 2) to required specification. Their program must include:

· subprograms with parameter passing

· implementation of a sort algorithm

· an array of records/2-D arrays

· reading and writing file/database operations

	
	2.2
Selecting and using appropriate structured data types

	·
	·

	
	2.3
Interfacing programs with stored data

	·
	·

	3
Investigate some contemporary programming paradigms by:
	3.1
Investigating simple object-oriented programs
	The candidate writes, or edits, and runs at least two object-oriented programs, and comments on how they work.
	Candidate completes all steps in both Task 3a) and 3b) by:

· editing and running successfully two different short object-oriented programs.

AND

Completing questions describing how each program works.

Task 1

Assessment Standard 1.1

a) Describe how the data is structured in a 2-D array

	

b) Describe when it would be appropriate to use a 2-D array.

	

Task 2 — Grand Prix race program

Assessment Standards 1.2, 2.1, 2.2 and 2.3

Your task is to implement and test a program to enable a user to:

· extract and store data to a file

· sort the data

· assign points depending on the race time of the driver

· display the data

· export date to a file

At this level, you must show that you can use, subprograms, parameter passing, structured data types, interface programs with stored data and implement a sort algorithm.

The data is stored in a file called “racing.csv” which your assessor will give you.

	Driver
	Team
	Race Time
	Points

	Sebastian Williams
	Red Drink
	0
	0

	Tom Hamilton
	Mercidas
	0
	0

	Danny Ricardo
	Red Drink
	0
	0

	Walter Borras
	Lewis
	0
	0

	Fernando Sonal
	Farrori
	0
	0

	Jenson Smith
	McMillan
	0
	0

The program should ask the race time for each driver:

Race time for Sebastian Williams is…

The race times that require inputting are:

	Sebastian Williams
	141.567

	Tom Hamilton
	140.342

	Danny Ricardo
	141.721

	Walter Borras
	140.982

	Fernando Sonal
	141.442

	Jenson Smith
	141.210

When all race times have been entered, the program should sort the drivers by the shortest race times and then assign the following points to the appropriate drivers:

· 25 points for 1st place

· 18 points for 2nd place

· 15 points for third place

Internal commentary should be used to explain how the sort subprogram works.

Your output display should be similar to this this:

Position Driver Team Race Time Points

 1 Tom Hamilton Mercidas 140.342 25

 2 Walter Borras Lewis 140.982 18

 3 Jenson Smith McMillan 141.210 15

 4 Fernando Sonal Farrori 141.442 0

 5 Sebastian Williams Red Drink 141.567 0

 6 Danny Ricardo Red Drink 141.721 0

The updated file should be stored as “racingresults.csv”

Tom Hamilton,Mercidas,140.342,25

Walter Borras,Lewis,140.982,18

Jenson Smith,McMillan,141.21,15

Fernando Sonal,Farrori,141.442,0

Sebastian Williams,Red Drink,141.567,0

Danny Ricardo,Red Drink,141.721,0

Test your program to ensure it works.

Give your assessor a printout of your program and evidence of the final outputs, labelled with your name and date of completion.

Task 3a (Python)

Assessment Standard 3.1

The following code defines and tests a Balloon class:

	1
	class Balloon():

	2
	

	3
	 def __init__(self, r,c):

	4
	 self.radius = r

	5
	 self.colour = c

	6
	

	7
	 def getRadius(self):

	8
	 return self.radius

	9
	

	10
	 def getColour(self):

	11
	 return self.colour

	12
	

	13
	def showBalloonDetails(b):

	14
	 print("Radius is",b.getRadius(),"Colour is",b.getColour())

	15
	

	16
	

	17
	def testBalloon():

	18
	 b1 = Balloon(4.0,"blue")

	19
	 b2 = Balloon(1.0,"purple")

	20
	 showBalloonDetails(b1)

	21
	 showBalloonDetails(b2)

	24
	

	25
	

	26
	testBalloon()

	27
	

Step 1a —
Identify which lines of code are used to create the two instances of the class Balloon
	

Step 1b —
Describe how one of these instances is constructed.

	

Step 2 —
Modify the testBalloon subprogram to create another new instance of the Balloon class that is yellow and has a radius of 3.

Step 3 —
Run the modified program and make sure that it works correctly.

Step 4 —
 Produce hard-copy evidence of modified program and the output from your test run. Hand in this hard-copy evidence, labelled with your name and date of completion, to your assessor.
Task 3b (Python)

Assessment Standard 1.3 and 3.1

The following code defines and tests a Countdown class:

	1
	class Countdown():

	2
	 def __init__(self, startingValue):

	3
	 self.startingValue = startingValue

	4
	

	5
	 def keepCounting(self, currentCount):

	6
	 if currentCount !=0:

	7
	 print(currentCount)

	8
	 self.keepCounting(currentCount-1)

	9
	 else:

	10
	 print("BLAST OFF!")

	11
	

	12
	 def start(self):

	13
	 self.keepCounting(self.startingValue)

	14
	

	15
	fullCountdown = Countdown(10)

	16
	fullCountdown.start()

	
	

This program produces the following output:

10

9

8

7

6

5

4

3

2

1

BLAST OFF!

Step 1a —
Identify where recursion occurs in the Countdown class.

	

Step 1b —
Explain how it achieves the desired result

	

Step 1c —
What is the purpose of recursion?

	

Step 2 —
Modify the above program to produce the following output:

The dog rounded up 1 sheep

The dog rounded up 2 sheep

The dog rounded up 3 sheep

The dog rounded up 4 sheep

The dog rounded up 5 sheep

And then went home for tea!

Step 3 —
Run the program and make sure that it works correctly.

Step 4 —
Produce hard-copy evidence of the modified program and the output from your test run. Hand in this hard-copy evidence, labelled with your name and date of completion, to your assessor.

Task 2 – Sample Solution

Advanced Higher Computing Science

SQA Unit Assessment Pack 2 - Task 2 (v2.0 2016-08)

INFILE = "racing.csv"

OUTFILE = "racingresults.csv"

class Driver():

 # store driver details as 'records'
 driver = ""

 team = ""

 raceTime = 0

 points = 0

--

def readDriverDetails(drivers):

 # read in all driver data from csv file (no headers)

 data = [line.rstrip('\n') for line in open(INFILE, 'r')]

 # split lines into lists

 dataLines = []

 for line in data:

 dataLines.append(line.split(','))

 # add list items to data objects

 for line in dataLines:

 driver = Driver()

 driver.driver = line[0]

 driver.team = line[1]

 driver.raceTime = float(line[2])

 driver.points = int(line[3])

 drivers.append(driver)

--

def getRaceTimes(drivers):

 for driver in drivers:

 prompt = "Enter race time for " + driver.driver+":"

 driver.raceTime = float(input(prompt))

--

def sortByRaceTime(drivers):

 #bubble sort

 #go through list of n-1, n-2, etc drivers

 for iteration in range(len(drivers)-1, 0, -1):

 #go through each drive in sub list

 for d in range(iteration):

 #if driver and next driver are in wrong order

 if drivers[d].raceTime>drivers[d+1].raceTime:

 #swap drivers

 tempDriver = drivers[d]

 drivers[d]=drivers[d+1]

 drivers[d+1]=tempDriver

--

def allocatePoints(drivers):

 drivers[0].points = 25

 drivers[1].points = 18

 drivers[2].points = 15

--

def saveResults(drivers):

 with open(OUTFILE, "w") as text_file:

 for d in drivers:

 print("{},{},{},{}".format(d.driver, d.team, d.raceTime, d.points), file=text_file)

--

def displayResults(drivers):

 print()

 print("{:9} {:20} {:15} {:11} {:8}".format("Position", "Driver", "Team", "Race Time", "Points"))

 position=0

 for d in drivers:

 position+=1

 print(" {:<7} {:20} {:14} {:8.3f} {:>8}".format(position, d.driver, d.team, d.raceTime, d.points))

##

Main Program

##

drivers = [] #list of Driver records

readDriverDetails(drivers)

getRaceTimes(drivers)

sortByRaceTime(drivers)

allocatePoints(drivers)

saveResults(drivers)

displayResults(drivers)

Unit Assessment Support for Software Design and Development (H223 77)
Advanced Higher — package 2: Unit-by-Unit approach v2.0 2016-08
9

