Program Design – Refining Main Algorithm Steps	Task 3

When refining an algorithm that uses an array of records to store data, dot notation (for example pollutionData().city) can be used to explain the fields in the record that are being used to solve the problem.
…
2. [bookmark: _Hlk112795989]Display the lowest NO2 level with the associated City and Date (IN: pollutionData(city,date,nitrogen,matter))
…
Step 2 of the pollution data algorithm could be refined as follows:
2.1	Set minimum to pollutionData(0).nitrogen
2.2	Set position to 0
2.3	Start a fixed loop from the second element of pollutionData() to the end
2.4		If the current value in pollutionData().nitrogen is less then the current minimum
2.5			Set the minimum to the current value in pollutionData().nitrogen
2.6			Set position to the current loop index
2.7		End if
2.8	End fixed loop
2.9	Display the city name at pollutionData(position).city
2.10	Display the date at pollutionData(position).date

Question 1	
Tom Talks organise speakers to give interesting evening talks. Each talk can accommodate 30 people. Where more than 30 people apply, the talk is repeated on different evenings.
The company store applications for all their talks in a text file. A line from the text file is shown below:
	001263,Brian Blessed,Keeping Busy after Retirement,68,brian.blessed@btnet.com
The file line includes the talk ID and title as well as the applicants name, age and e-mail address. The program should read all the applicants’ data into an array of records after which the program will find and display information about one of the talks.
A structure diagram design for the program is shown below.Program: Tom Talk Applications
Read data from the applicants file into an array of records
Count and display the number of applicants in the following age ranges: <18, 18 to 49, >=50
Display the youngest and oldest applicants attending
Find and store the
e-mail addresses of all applicants attending
Using the stored e-mail addresses count the number of applicants attending
Display the number of evenings required to accommodate full talks of and the number of spaces still available in a further talk.
Using the stored email addresses write the applicants’ names and e-mail addresses to a csv file
applicants(talkID, name,title,age, email)
Ask the user to select the ID of the talk they wish to analyse
emails()
emails()
applicantNum
applicantNum
emails()
applicants(talkID, name,title,age, email)
applicants(talkID, name,title,age, email)
applicants(talkID, name,title,age, email)
applicants(talkID, name,title,age, email)
selectedTalkID
selectedTalkID
selectedTalkID
selectedTalkID

Using either pseudocode or structure diagram design methodology refine the following main steps.
	a)
	Count and display the number of applicants in the following age ranges: <18, 18 to 49, >=50

Sample Structure Diagram Answer

Set three range (<18, 18 to 49, >=50) counts to 0
Display final count for the three ranges
Loop for each age in applicants()

If the current value in applicants().age < 18 and applicants().age < 50 then increment lower range count by 1

If the current value in applicants().age >=50 then increment lower range count by 1

If the current value in applicants().age < 18 then increment lower range count by 1

Sample Pseudocode Answer
3.1	Set lower to 0
3.2	Set middle to 0
3.3	Set upper to 0
3.5	Start a fixed loop for the length of applicants()
3.6		If the current value in applicants().age < 18
3.7			Increment lower by 1
3.10		Else if the current value in applicants().age >=18 and current value in applicants().age < 50
3.11			Increment middle by 1
3.12		Else
3.13			Increment upper by 1
3.14		End if
3.15	End fixed loop
3.15	Display lower, middle and upper

One mark each for:
· set counts to 0
· fixed loop for length of applicants
· counts incremented correctly within an appropriate if structure
· display all three counts

	(4 marks)

	b)
	Display the number of evenings required to accommodate full talks of and the number of spaces still available in a further talk.

Sample Structure Diagram Answer
Calculate number of talks required (integer of applicantNum / 30
Calculate places left (30 - leftOver)
Calculate number of attendees to final talk (modulus of applicantNum/30)
Display number of full talks and number of available places in the final talk

Sample Pseudocode Answer
7.1	Set NumberOfTalks to the integer of applicantNum / 30
7.2	Set leftOver to modulus of applicantNum/30
7.3	Set additionalPlaces to 30 - leftOver
7.5	Display NumberOfTalks
7.6	Display additionalPlaces

One mark each for:
· Calculate number of full talks (using int function)
· Calculate leftover places
· Display the result of both calculations

	(3 marks)

	c)
	Find and store the
e-mail addresses of all applicants attending

Sample Structure Diagram Answer

Return emails()
Loop for each talkID in applicants()
Declare an empty array called emails()

If applicants().talkID = selectedTalkID then add applicants().email to emails()

Sample Pseudocode Answer
5.1	Declare array called emails()
5.2	Start a fixed loop for the length of applicants()
5.3		If the current value in applicants().talkID = selectedTalkID
5.4			Add the current value in applicants().email to emails()
5.5		End if
5.6	End fixed loop
5.7	return emails()

One mark each for:
· New array emails() created
· fixed loop for length of applicants
· Correct emails added to emails()
· Return array

	(4 marks)

	d)
	Using the stored email addresses write the applicants’ names and
e-mail addresses to a csv file

Sample Structure Diagram Answer
Open a new csv file
Loop for each email in emails()
Close file

Loop for each record in applicants()

When email is found in applicants() write matching name and current email to file

Sample Pseudocode Answer
8.1	Open a new csv file
8.2	Start a fixed loop for the length of emails()
8.3		Set found to false
8.4		Set counter to 0
8.5		Loop while found = false
8.6			If applicants(counter).email = current email in emails()
8.7				Write applicants(counter).name and applicants(counter).email to file
8.8			End if
8.9			Increment counter by 1
8.10		End while loop	
8.11	End fixed loop
8.12	Close file

One mark each for:
· open and close file
· fixed loop for length of emails()
· conditional loop to find each email in applicants()
· write name and email to file
For the third bullet also accept: fixed loop to find each email in applicants()
This is less efficient but the question does not ask for the most efficient solution.

	(4 marks)

2

