Starting from Scratch	Scratch Project

[bookmark: _Toc326175819][bookmark: _Toc326263484][bookmark: _Toc326520289][bookmark: _Toc326525073][bookmark: _Toc326525588][bookmark: _Toc336706665][bookmark: _Toc338687170]Starting from

An Introduction to Computing Science
by Jeremy Scott
[bookmark: _Toc317712837][bookmark: _Toc326175821][bookmark: _Toc326263486][bookmark: _Toc326520291][bookmark: _Toc326525075][bookmark: _Toc326525590][bookmark: _Toc336706667][bookmark: _Toc338687172] (
LEARNER
 NOTES
)
Acknowledgements
This resource was partially funded by a grant from Education Scotland. We are also grateful for the help and support provided by the following contributors:
Cathkin High School
Linlithgow Academy
Perth High School
George Heriot’s School
Stromness Academy
CompEdNet, Scottish Forum for Computing Science Teachers
Computing At School
Professor Hal Abelson, MIT
Mitchel Resnick, MIT
Scottish Informatics and Computer Science Alliance (SICSA)
Edinburgh Napier University School of Computing
Glasgow University School of Computing Science
Heriot-Watt University School of Mathematical and Computer Sciences
University of Edinburgh School of Informatics
Robert Gordon University School of Computing
University of Dundee School of Computing
University of Stirling Department of Computing Science and Mathematics
University of West of Scotland School of Computing
International Olympic Committee
ScotlandIS
Turespaña
Brightsolid Online Innovation
JP Morgan
Microsoft Research
Oracle
O2
Sword Ciboodle

The contribution of the following individuals who served on the RSE/BCS Project Advisory Group is also gratefully acknowledged:
Professor Sally Brown (chair), Mr David Bethune, Mr Ian Birrell, Professor Alan Bundy, Mr Paddy Burns, Dr Quintin Cutts, Ms Kate Farrell, Mr William Hardie, Mr Simon Humphreys, Professor Greg Michaelson, Dr Bill Mitchell, Ms Polly Purvis, Ms Jane Richardson and Ms Caroline Stuart.

Some of the material within this resource is based on existing work from the ScratchEd site, reproduced and adapted under Creative Commons licence. The author thanks the individuals concerned for permission to use and adapt their materials.

BCS is a registered charity: No 292786
The Royal Society of Edinburgh. Scotland's National Academy. Scottish Charity No. SC000470

[bookmark: _Toc315279803][bookmark: _Toc315615732][bookmark: _Toc315691528][bookmark: _Toc315706861][bookmark: _Toc315809765][bookmark: _Toc315810075][bookmark: _Toc317522518][bookmark: _Toc317522557][bookmark: _Toc317619989][bookmark: _Toc317712838][bookmark: _Toc326175822][bookmark: _Toc326263487][bookmark: _Toc326520292][bookmark: _Toc326525076][bookmark: _Toc326525591][bookmark: _Toc336706668][bookmark: _Toc338687173]Contents
Introduction	5
What is a computer?	5
Types of computer	6
Parts of a computer	9
Hardware	10
Software	11
Programming languages	12
Programming in Scratch	12
1: Scratching the Surface	13
All the world’s a stage	13
Putting things in order	15
Did you understand?	16
Lazy or smart?	18
2: Story Time	19
Bugs	20
Event-driven programming	23
3: A Mazing Game	24
The Importance of Design	24
4: Get the Picture?	32
Nesting	33
5: Forest Archery Game	41
Variables	44
Summary	47
Scratch Project	49
Congratulations	59

Starting from Scratch	An Introduction to Computing Science

[bookmark: _Toc338687174]Introduction
You have probably already used several computers today without realising it.
If you have sent a text, been driven in a car, or checked your watch then you have used a computer. The words you are reading now were typed on a computer.
Computers are all around us. Since they affect so many parts of our lives, it is important to understand how they work.
[bookmark: _Toc338687175]What is a computer?
A computer is a machine that carries out instructions given to it by a human. Without instructions, computers wouldn’t be able to do anything.
If this is the case, then what makes them special? Well, computers…
· work faster than humans [footnoteRef:1] ; [1: At the time of writing, a modern personal computer could perform over 100 billion calculations every second!]

· are more accurate than humans;
· can store huge amounts of information that they never “forget”.
It might seem that computers can do almost anything. However, here are some other important things to remember:
· Computers don’t have brains; they are not cleverer than humans.
· Computers don’t have feelings or “common sense”. This means that there are lots of everyday tasks that humans can perform that computers still cannot.

	Activity	Write down three everyday tasks that humans perform but computers cannot (or are not very good at).
1. 		
2. 		
3. 		
[bookmark: _Toc338687176]Types of computer
Computers come in many shapes and sizes. Computers that most people might recognise include:

Desktop 	A desktop PC (Personal Computer) is designed to sit on top of – or under – a desk and is used by one person at a time. It is powered by mains electricity and made up of separate devices.

Laptop 	Laptop computers combine all the separate devices of a desktop PC into one unit. This can be carried around and powered by mains electricity or battery. Netbooks and ultrabooks are just smaller, lighter types of laptop.

Tablet	This has a large, touch sensitive screen which is used with your finger (or sometimes a special pen). It is battery-powered and very portable. Tablets have an on-screen “virtual” keyboard[footnoteRef:2].
 [2: The word “virtual” is used a lot in Computing. It just means “not real” – it’s something that’s been recreated on a computer. Can you think of any other virtual things you get on a computer?]

	Activity	The personal computers shown above appear in order of oldest to newest types.
What does this tell you about the kind of computers people want?
	
	
	

Other computers that may not be as well-known or recognised by most people include:
Mainframe 	This is a large computer which can take up an entire room. Many users can use it at the same time, each with their own keyboard, mouse and monitor.
	Mainframes are very expensive and need a team of people to run them. They are owned by large organisations that need to store and process huge amounts of information.

Server	A server is a computer that provides services for other computers on a network e.g.
· file server (stores users’ files)
· web server (serves out web pages)
· mail server (provides email services)

Games console	Games consoles are also computers. Most have a disc drive for loading games and a powerful processor to create realistic graphics.
	Many games consoles can also connect to the Internet, letting users buy games online or compete with other gamers around the world.

Embedded 	Many devices in your home have an embedded computer – a small silicon chip that carries out stored instructions. The modern home has over 100 of these “computers”, built into devices like a toaster, stereo, washing machine, fridge, TV, etc.
	A modern car may have another 100 or more embedded computers[footnoteRef:3]. [3: Source: http://www.eetimes.com/discussion/significant-bits/4024611/Motoring-with-microprocessors]

	Activity	Write down three devices in your own home that you think might contain an embedded computer (besides those shown above).
1. 		
2. 		
3. 	

Smartphone	“Smart” mobile phones like Android and Apple iPhone are really pocket computers that can also make phone calls. Many smartphones use large touch screens.
	This is a good example of convergence where technologies that were previously separate are now combined in one device.

	Activity	Write down three technologies that are combined in a modern smartphone.
1. 		
2. 		
3. 	

[bookmark: _Toc338687177]Parts of a computer
A computer is a machine that:
· takes in information
· stores this information
· processes this information
· and gives this processed information back out.

 (
INPUT
PROCESS
OUTPUT
STORAGE
)

	Activity	Write down inputs and outputs for the following activities on different types of computers. When you have finished, create an extra one of your own:
	Activity
	Input(s)
	Output(s)

	Playing a video game
	Move game controller
Click buttons
	Character moves
Menu selections made

	Surfing the WWW
	
	

	Making a phone call
	
	

	Watching TV
	
	

	
	
	

There are two main parts to a computer: hardware and software.
[bookmark: _Toc338687178]Hardware
Hardware means computer equipment. A single piece of hardware
is called a device.
There are four main types of device in a computer:
Input device	used to put data into the computer
Central Processing Unit (CPU)	where the computer carries out the instructions given by the programs. The faster the processor, the faster your computer will work.
Output device	used for data coming out of the computer
Storage device	used to store programs and data. It is where you save your work on to.
Put simply – if you can touch it, it’s hardware.

	Activity	Decide if the following devices are input, output or storage devices then put each one into the correct column. The first three have been done for you.
keyboard; hard disc drive; monitor; speaker; scanner; printer; mouse; DVD drive; microphone; memory stick; game controller; smartphone touch screen; memory card
	Input Device
	Storage Device
	Output Device

	keyboard
	hard disc drive
	monitor

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

[bookmark: _Toc338687179]Software
A computer can perform different tasks, depending on the instructions it is given.
A list of instructions is called a program. Without a program to tell it what to do, a computer would just be a (useless) collection of hardware devices.
Software is the name given to programs and the information they use.

	Activity	Complete the table below of ten different jobs you can do on a computer and the name of a software package that lets you do it.
	Task
	Software package

	Browse the World Wide Web
	Internet Explorer

	Play games
	Angry Birds

	Edit a movie
	iMovie

	
	

	
	

	
	

	
	

	
	

	
	

	
	

[bookmark: _Toc338687180]
Programming languages
Computers follow instructions given to them by humans. They can solve only the problems that people tell them to solve. To tell a computer what to do, you must know what problem you want to solve and have a plan for solving it.
Unfortunately, these instructions can’t just be given to the computer in normal English. A computer can perform tasks very quickly, but it is not intelligent like we are.
A computer will do:
· only what it is told and
· exactly what it is told.
This means that computer programs have to be written in a very precise way, according to strict rules. There must be no confusion over what instructions mean.
A set of instructions and rules that a program can be written in is called a programming language.
[bookmark: _Toc338687181]Programming in Scratch
The rest of this course will focus on how to write computer programs.
You will be using Scratch, created by MIT (Massachusetts Institute of Technology), one of the USA’s leading universities.
	

	A model of the Scratch cat at MIT Media Lab

Scratch is a powerful software development package. It lets you create programs (called projects) that combine sound, graphics and animation.
You can upload your projects to the Scratch website and share with other Scratchers around the world. It really is the cat’s whiskers!
You will learn how to use Scratch through a series of lessons. At the end of each one, there will be some questions which will help to check if you have understood what you have learned.

Starting from Scratch	Programming in Scratch

[bookmark: _Toc338687182]1: Scratching the Surface
This lesson will cover
· The Scratch environment, including
· Sprites & stage
· Properties
· Scripts
· Costumes/backgrounds
· Sounds
· Creating a program with animation & sound
Introduction
Watch the video introduction to Scratch. This will introduce you to Scratch and its screen layout.
http://www.youtube.com/watch?feature=player_detailpage&v=jxDw-t3XWd0
[bookmark: _Toc314164981]
[bookmark: _Toc338687183]All the world’s a stage
A Scratch program contains sprites (characters) that “perform” on a stage. Sprites and the stage have three kinds of properties (or settings):
	1.	Scripts
		These are the instructions that control a sprite. Scripts are made from blocks.
		There are eight different kinds of blocks – to do with motion, control, looks, etc. – and over 100 blocks in total. Note that sprites need scripts to perform a task.
	2.	Costumes/Backgrounds
		Costumes are “outfits” for a sprite. The same sprite can have several costumes and so be made to look completely different.
		The stage can have different backgrounds which can be changed. Backgrounds are just like costumes for the stage.
	3.	Sounds
		These are sounds that sprites or the stage can use. Again, each sprite (or the stage) can have many different sounds. Scratch lets you import (bring in) recorded sounds or even record your own using a microphone.

Task 1: Up on the Catwalk
Watch screencast Catwalk.
This will go over the main elements within Scratch and take you through the task of creating your first computer program. If you get stuck, go back in the screencast or ask your partner.
Task 2: Frère Jacques
Watch screencast FrereJacques.
This will show you how to create a simple tune in Scratch. If you get stuck, go back in the screencast or ask your partner.

Did you know…?	Frère Jacques is one of the best-known songs in the world. It is a French song about a religious monk (“Brother John” in English) who has the job of ringing the morning bell before the days of alarm clocks. Unfortunately, poor Jacques has overslept!
		
Task 3: My Tunes
Once you have completed Task 2, try creating a program that plays another simple song.
Choose one where lines of the music repeat, so you can use the repeat command.

Congratulations – you have just started your journey to become a computer programmer!

[bookmark: _Toc338687184]Putting things in order
Blocks in the same script get executed (carried out) in sequence, one after the other.
Blocks in separate scripts can sometimes be executed at the same time. This is called parallel processing – having the computer do more than one thing at a time.
For example, if you have several scripts, they will all get executed together when the green flag is clicked.

Extension 1: Dance away
Try to make a sprite dance in time to your music, starting the program when the green flag is clicked. There are two ways you could do this:
· create a single script that includes the sprite movement blocks amongst the play note blocks
· have separate scripts for the same sprite – one script plays the tune whilst the other makes the sprite dance.

You can find another screencast (Dancing Queen) to give you some inspiration at http://info.scratch.mit.edu/node/164 .
Make sure you create a tune, rather than just use a music loop, though!

Extension 2
Experiment by adding some other blocks to your program, such as the looks blocks e.g.
These let you create some really fun effects!

[bookmark: _Toc336706680][bookmark: _Toc338687185]
Did you understand?
1.1	Look at the section of code opposite that controls a sprite. Write down what you think the user will see when the green flag is clicked.
		
		
	Why? 	
		
	Now try out the code yourself and see if you were right.

1.2	Now add a wait 1 secs block between the two move blocks. Describe what happens now.
		
	Explain why this happened 	
		

1.3	Look at the section of code below that controls a sprite.
	
	Write down what you think the user will see when the green flag is clicked.
		
		
	Why? 	
		
	Now try out the code yourself and see if you were right.
1.4	In the stack of blocks below, how many times does the sprite move 10 steps?
	

			

1.5	A programmer wants the cat to dance to some music. However, the cat doesn’t start dancing until after the music has finished!
	

	Why is this?
			
		

1.6	In the example below, a programmer has chosen a piece of music (sound “Xylo1”) to play during a game. However, when the green flag is clicked, the computer just plays the first note of the music – over and over again!
What mistake has the programmer made?
	
	

1.7	In Extension 1: Dance Away, you made a sprite dance to a tune you created. There were two ways you could do this:
· have a single script with the movement blocks amongst the play note blocks
· have separate scripts for the same sprite – one script plays the tune whilst the other makes the sprite dance.
	Why do you think experienced programmers would use separate scripts?
		
		

1.8	Make up a question like those from 1.1–1.6 and pass it to your neighbour.
		
		
		

[bookmark: _Toc338687186]Lazy or smart?
Computer programmers always look for shortcuts to make their life easier.
A good example is how we used a repeat block in Frère Jacques to repeat the same line of music instead of having two identical sets of blocks. As well as looking neater, it also means that you won’t make a mistake when creating a second set of blocks.
Do you think this makes programmers lazy or smart? (Hint: the answer is smart!)
You can make your life easier, too by spotting shortcuts like this.
Starting from Scratch	1: Scratching the surface

[bookmark: _Toc338687187]2: Story Time
This lesson will cover
· creating stories and plays
· sequencing instructions
· events
· the broadcast command
Task 1: A bad joke
Watch screencast BadJoke. This shows how to use Scratch to create a joke or play between two characters.
Once you have done this, try creating a joke of your own – for example, a “Knock, Knock” joke – that uses two characters like the one in the example.
Pay attention to when each character (sprite) “speaks” by planning out the code, including speaking and waiting, like the one below.

	Girl
	Boy

	Say “Hey, I’ve got a joke!” for 3 secs
	Wait 3 secs

	Wait 3 secs
	Say “Okay – let’s hear it!” for 3 secs

	Say “My dog’s got no nose” for 3 secs
	Wait 3 secs

	Wait 3 secs
	Switch to costume of boy shrugging
Say “How does it smell?” for 3 secs

	Say “Terrible” for 2 secs
	Wait 2 secs

	
	Switch to costume of boy laughing
Say “<Groan>” for 3 secs

2.1	Write down any problems you had and what you did to overcome them.
		
		
		
		

Task 2: A short play
Write a short story or play. There should be two or three scenes (backgrounds) where the actors (sprites) change costumes.
Keep it simple with only two or three actors (sprites). Write a script on lined paper, with each actor’s lines side-by-side, as shown in the previous example.
Hint: You can use the broadcast block to let a sprite trigger an event, such as a scene change e.g.
	In the sprite script
	In the stage script

	
	

You can find another screencast (Haunted Scratch) to give you some inspiration at http://info.scratch.mit.edu/node/165
Extension 1: A walk-on part
Make your characters walk on to the screen and stop at a certain point during the play.
Hint: you will have to start your sprite actors at the edges of the screen and use the show and hide blocks to make them appear at the correct place every time.

[bookmark: _Toc338687188]Bugs
A bug is an error which stops your code working as expected. There are two main types of bug which can occur in a program:
	●	Syntax error
This happens when the rules of the language have been broken e.g. by mis-spelling a command. Syntax errors usually stop the code from running. Languages like Scratch provide code in ready-written blocks, so you won’t make many syntax errors.
	●	Logic error
This means your code runs, but doesn’t do what you expect.
Unfortunately, it’s still possible to make logic errors in Scratch!
Finding and fixing these errors in a program is known as debugging.
Did you understand?
2.1	The program below shows the scripts for two sprites to tell a joke to each other. Why would this program not work?
	Girl
	Boy

	
	

		
		

2.2	The program below shows the scripts for two sprites to tell a joke to each other. Aside from being a terrible joke, what is wrong with this program?

		
		

2.3	The program below shows the scripts for two sprites to tell a joke to each other. Why would this program not work?
	Girl
	Boy

	
	

		
		
		

2.4	Now make up a “buggy” question of your own and pass it to your neighbour.

[bookmark: _Toc338687189]Event-driven programming
Some computer programs just run and continue on their own with no input from the user e.g. your program to play a tune.
However, many programs react to events (things that happen), such as:
	●	the click of a mouse or press of a key;
	●	the tilt of a game controller;
	●	a swipe of a smartphone screen;
	●	a body movement detected by a motion-sensing controller such as a Kinect

In Scratch, event blocks have a curved top (sometimes called a “hat”):

		Reacts when the green flag is clicked.
Often used to start a program.

		Reacts when a key is pressed. Click the small black triangle to select the key you want to detect. Useful for controlling a sprite, or triggering an action.

		Reacts when a sprite is clicked. Useful for controlling characters in a program.

It is also possible to create your own events in Scratch using the broadcast command.

2.4	Look at the Scratch environment and write down some other events or conditions that Scratch programs can react to.
Hint: the Control and Sensing blocks are a good place to start.
		
		
		
		

Starting from Scratch	2: Story Time

[bookmark: _Toc338687190]3: A Mazing Game
This lesson will cover
· Game creation
· Collision detection
Introduction
You are going to create a simple game where the player guides an “explorer” character around a maze using the arrow keys.
The game will end when the explorer rescues its friend in the middle.
Introduction
Watch screencast Maze to learn how to create the Maze game.
Task 1: Setting the scene
Set up the game by importing the stage costume (Maze) and two sprites – an explorer and a friend for the explorer to rescue. Don’t do any more at this point.

[bookmark: _Toc338687191]The Importance of Design
Before we make anything – a house, a dress or a computer program – we should start with a design. Because there are two important parts to most programs – the interface (how it looks) and the code – we design these separately.
	●	The easiest way to design the interface is by sketching it out on paper.
	●	To design the code, write out a list of steps it will have to perform in English. This is known as an algorithm and is just like the steps in a food recipe.
Solving problems like this is what programming is really about, rather than entering commands on the computer.
All good programmers design algorithms before starting to code!

Task 2: Designing the solution
Let’s look again at the two main things we need to code in our game:
1. moving the explorer
2. reaching centre of the maze (and rescuing the explorer’s friend)
The table below shows an algorithm for moving the explorer and Scratch code that does the same thing.
	Algorithm for moving explorer
	Code

	when the flag is clicked
	repeat forever
		if right arrow key is pressed			point right
			move 5 steps
		if left arrow key is pressed			point left
			move 5 steps
		if up arrow key is pressed				point up
			move 5 steps
		if down arrow key is pressed			point down
			move 5 steps
		if explorer touches the same
		colour as the maze wall
			go back to starting position
	

Algorithms let programmers concentrate on what the program has to do instead of how to do it on the computer. Once the algorithm is worked out, writing the code is easy!
Notice how an algorithm is indented to show which parts belong inside other parts e.g.
	repeat forever
	 →	if right arrow key is pressed 	goes inside repeat forever
		 →	point right	goes inside if right arrow key is pressed
		 →	move 5 steps 	goes inside if right arrow key is pressed
Task 2: Designing the solution (continued)
The table below shows an algorithm for the explorer’s friend sprite.
From this algorithm, see if you can create the code yourself. Remember to put it in the friend sprite!
	Algorithm for reaching centre of maze
	Code for friend sprite

	when the flag is clicked
	show sprite
	repeat forever
		if touching explorer sprite
			say “Thank you!”
			hide sprite
			stop all scripts
	Code this one yourself!

Now test your game to see if it works.
Extension 1: Getting in tune
Add a background tune to your game (sound “xylo1” seems to suit, but
choose what you think sounds best).
Think about the following:
· Where would be the best place to store this, since it applies to the whole game?
· How will you get the music to keep playing?
· Should you use a play sound or play sound until done block to play the music?
Extension 2: Add an enemy
Add a sprite that constantly moves back and forth across the stage.
If your explorer touches the enemy, the explorer should go back to the start.
Hint: set your enemy sprite to move only left & right.
The if on edge, bounce block is useful to bounce back and forth
off the edge of the stage.
Did you understand?
3.1	A programmer creates a maze game like the one you’ve just created. Unfortunately, her character doesn’t move as expected.
What mistake has she made?
	
	
	
	
	
	
	
	
	
	

3.2 	Look at the examples of code below.

	
	

	Do they perform the same task?	
	Explain your answer 	
		
		

3.3	The code below controls a sprite going round a maze. If the sprite touches the side of the maze (the colour blue), it returns to its starting position of -150, 150.
	Unfortunately, the sprite sometimes touches the walls of the maze and returns to the start when the player doesn’t expect.
What mistake has the programmer made?
	
	
	
	
	
	
	
	
	
	
	

3.4	In this example, the sprite is supposed to return to the centre of the maze when it touches the sides (coloured blue); however, it only does this sometimes.
What mistake has the programmer made?
	
	
	
	
	
	
	
	
	
	
	

3.5	In this example, the sprite never returns to starting position, even if it touches the walls of the maze (coloured blue).
What mistake has the programmer made?
	
	
	
	
	
	
	
	
	
	
	
	
	

3.6	Now make up a buggy question of your own and pass it to your neighbour.

Starting from Scratch	3: A Mazing Game

[bookmark: _Toc338687192]4: Get the Picture?
This lesson will cover
· The Scratch environment
· Sprites
· Code blocks
· Fixed loops
· The broadcast and wait command
· Programming computer graphics
Introduction
In this lesson, you will write programs to create simple computer graphics using Scratch’s Pen blocks.
Task 1: Shaping up
Watch screencast Graphics. This demonstrates how to use Scratch to create some simple computer graphics (pictures).

Write down below programs to create the heptagon (7 sides) and triangle:
	Square
	Pentagon
	Hexagon
	Heptagon
	Triangle

	
	
	
	
	

Now try out your programs (either double-click on the stacks of blocks or add a when flag clicked block at the start).
Did your programs work?	
If not, why not? 	
	
		
The Rule of Turn
Did you spot the pattern here?
In every shape, we turned a full circle (360°). To work out how many degrees we need to make at each turn, simply…
Divide the total number of degrees turned in the shape by the number of turns taken
So…	in a square, we go round 360° in 4 turns, so 360/4 = 90° per turn;
	in a pentagon, we go round 360° in 5 turns, so 360/5 = 72° per turn
Task 2: You’re a star!
Now use the Rule of Turn above to draw a five-pointed star (opposite).
Hint: Pay careful attention to what the rule says!
Task 3: Circle
Create a circle. This is easier than you might think: simply
repeat 36 times
	move 5 steps
	turn 10 degrees
Task 4: Circular pattern
Make a pattern out of 36 squares arranged in a circle of their own.
repeat 36 times
	draw a square	put the code to draw a square here
	turn 10 degrees

Try changing the shape to squares, triangles or hexagons.

[bookmark: _Toc338687193]Nesting
In Task 4, we saw one repeat loop inside another – this is called a nested loop.
In this case, the program starts the outer repeat, then enters the inner repeat, which carries on until it’s finished. The outer repeat then carries on and so on.
Turn on single stepping (Edit menu) to see this happening more slowly. Remember to turn off single stepping when you have finished.
Extension 1: The main event
Create your own When I receive scripts to draw each of the shapes you have already created (square, triangle, pentagon, etc.). Remember to use broadcast and wait to trigger the When I receive blocks.
Once you have done this, adapt your program for Task 4: Circular pattern to use a broadcast and wait block for the repeating shape.
Extension 2: Our house
Draw a house like the one shown opposite.
Write an algorithm – that is, plan the steps out on paper –
before you try to code this!
You will need to use penup and pendown blocks.
Hint: Think about how you could use the broadcast and wait command to reduce the amount of code you create.

Extension 3: Mmm… doughnuts
Adapt the pattern above to create a multi-coloured doughnut shape.
Write an algorithm before you try to code this!
Hint: There are 36 circles, but the pen moves slightly – with the
pen up – before putting the pen down and drawing the next one.
The program also uses the change pen color by block to make it colourful.

Extension 4: The Olympic Rings[footnoteRef:4] [4: The Olympic rings symbol is reproduced by kind permission of the International Olympic Committee. The Olympic rings are the exclusive property of the International Olympic Committee (IOC). The Olympic rings are protected around the world in the name of the IOC by trademarks or national legislations and cannot be used without the IOC’s prior written consent.]

This is hard! Try to write a program to draw the five Olympic rings. Write an algorithm before you try to code this!
Hint: make each circle using a broadcast and wait command and think about the spacing between the centre points.

Did you know…?	The Olympic flag was flown for the first time at the 1920 Summer Olympics in Antwerp, Belgium and has been flown at every Olympic Games ever since.
		The five rings represent the five continents of America, Africa, Asia, Australasia, Europe. The colours – blue, yellow, black, green and red on a white background – were chosen because every nation had at least one of them on its national flag.

Did you understand?
4.1	Look at the program below.
	Write down the order in which the scripts are carried out after the green flag is clicked (number them in order 1, 2 and 3).
	Number
	Script

	
	

	
	

	
	

	Now describe what the code will do.
		
		
		

4.2	Look at the code examples below.
a) How many times will sprite move 10 steps? 	
Why? 	
	

b) How many times will sprite move 10 steps? 	
Why? 	
	
	

4.3	Discuss the following examples from real life. Write an “algorithm” for each one!
	a)
	Getting ready for school
	b)
	Making breakfast

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	Think: In each example, are there steps that could go in separate scripts and get carried out at the same time?

4.4	A programmer tries to create a circular pattern of squares like the pattern labelled “Correct” below. Unfortunately, it always seems to go wrong, displaying the pattern labelled “Wrong”.
	Correct
	Wrong

	
	

Look at the programmer’s code opposite. What mistake have they made?
Hint: it’s something to do with how fast the computer works.
	
	
	
	
	
	
	

4.5	Now make up a “buggy” question of your own and pass it to your neighbour.

Did you understand? (Extension 3 only)
4.6	A programmer tries to draw a doughnut like the one in Extension 3. Unfortunately, it just draws lots of circles on top of each other.
What mistake has she made?
Don’t worry if you can’t see it straight away – this is tricky! If necessary, enter the script into Scratch and run it to help you understand what’s going on.	
	
	
	
	
	
	
	

Starting from Scratch	4: Get the picture?

[bookmark: _Toc338687194]5: Forest Archery Game
This lesson will cover
· Decision statements
· conditional loops
· variables
· random numbers
· animation
· sound
Introduction
Watch screencast ForestArchery to see how to create this game.

Task 1: Designing the solution
Let’s look again at the two main things we need to code in our game:
1. moving the target
2. shooting the target
Try to code your program from the algorithms given overleaf, rather than looking at the screencast again.

Algorithm to move target (in Target sprite)
when flag is clicked
repeat forever
	glide in 1 second to a random position*
	*	x is a random number from -240 to 240
		y is a random number from -180 to 180

Algorithm to move sight and shoot (in Sight sprite) /…

Algorithm to move sight and shoot (in Sight sprite)
when flag is clicked
repeat forever
	go to mouse location (the mouse x and mouse y positions)
	if the mouse button is down (the user has clicked the mouse)
		if the sprite is touching the target sprite
			add 1 to score variable
			play Pop! sound
			Say “Hit!” for 0.5 seconds

Task 2: Hit and miss
Change your code to make the program count misses as well as hits (taking off 1 point from the score):
If touching target
	change score by 1
	play Pop! sound
	Say “Hit!” for 0.5 seconds
else
	change score by -1
	play sound
	say “Miss!” for 0.5 seconds

Task 3: Against the clock
Add a timer variable to your program which makes the game last 30 seconds. Make the variable appear on the screen as it counts down from 30 to 0.
when flag is clicked
repeat 30 times
	wait 1 second
	change time by -1
stop all scripts

Task 4: Bullseye!
Using if and touching colour blocks, change the program so that when the target is hit, it adds the following to the score:
· White – 1 point
· Black – 2 points
· Blue – 3 points
· Red – 4 points
· Gold – 5 points (and says “Bullseye!”)

Task 5: Stay positive!
Adapt the program so that the user will never get a negative score.
Hint: take off a point only if the score is above zero.

Did you know…?	Humans are known to have practised archery for at least 10,000 years. It was first used for hunting (see cave painting opposite[footnoteRef:5]), then in warfare. [5: © Instituto de Turismo de España (TURESPAÑA). Image of cave painting from Cova dels Cavalls remains the exclusive property of Turespaña and cannot be used or reproduced without Turespaña’s prior written consent.]

		In medieval England, it was compulsory for all men to practise archery regularly, so they would be skilled if required to go to war.
		Nowadays, archery is a popular leisure activity enjoyed by people all around the world.

[bookmark: _Toc338687195]Variables
In this game, we introduced the idea of keeping a score using a variable block.
A variable is a space in a computer’s memory where we can hold
information used by our program – just like storing things in a box.
We should always give a variable a sensible name that tells us
what kind of information is stored in it – just like putting a label
on the box to tell us what’s inside.
To create a variable in Scratch, we make a variable block.
Once a variable is created, the information stored inside it can be
set or changed (that is, varied – hence the word “variable”).

Extension 1: A Mazing cool feature
We’re now going to add a new feature to your Maze game from lesson 3 – a timer that gives the user 30 seconds to finish the game.
To do this, add a variable called time and create a new script that does the following:
When green flag is clicked
set variable (time) to 30
repeat until time = 0
wait 1 second
subtract 1 from variable (time)
say “You Lose”
stop all scripts

Before you write this script, think about where might be the best place to put it.
Hint: is it something that applies to a single sprite or the whole game?
Extension 2: A Harder Maze
Now create a maze of your own which has more than one route to the middle.
Hint: Just create a new stage background for this.

Extension 3: Do I get a prize?
Create new sprites in your Mazing game to act as bonuses along the way.
These should disappear (hide) when the explorer touches them and add to a score variable. Be sure to place some of them away from the quickest route around the maze to make it more challenging!
Extension 4: Now you see it…
Add some code to your Mazing game that shows and hides your bonus sprites after random times e.g. between 1 and 5 seconds (but experiment to see what works best).

Did you understand?
5.1	Look at the script below to make a timer variable count down from 30 to 0.
Will it work? 	
Explain your answer 	
	
	
	

5.2	Now make up a buggy question of your own and pass it to your neighbour.	
Starting from Scratch	5: Forest Archery Game

[bookmark: _Toc338687196]Summary
Computing Science concepts
You have also learned about some important ideas within Computing Science:
· What a computer is
· Types of computer
· Hardware
· Software
· Program design, including algorithms
· Bugs
Programming structures/commands
In this course, you have used the following programming features:
· Reacting to events
· Decision-making
· if
· if…else
· Variables – for example
· scores
· timers
· Loops
· fixed (repeat, forever)
· conditional (forever if)
· Collision detection
· if … touching
· if … touching colour
Scratch has many more commands, but you have now learned enough to go on to the next stage.
Scratch features
You have also learned about the following features of Scratch:
· Sprites & stage
· Properties
· Scripts
· Costumes/backgrounds
· Sounds
· Animation
· Graphics tools
You now have all the skills you need to create some really amazing Scratch projects!

Starting from Scratch	Summary
[bookmark: _GoBack]
[bookmark: _Toc338687197]Scratch Project
Working in a pair or group, you are now going to create a Scratch project of your own!
You may have some ideas already, but programs are normally created in a series of stages:
1. Analyse
2. Design
3. Implement
4. Test
5. Document
6. Evaluate
7. Maintain
Or… A Dance In The Dark Every Midnight!

Analyse
Working in pairs or small groups, brainstorm three ideas for your project. Think of how it might link in with other subject areas you’re studying.
Think of the areas you’ve covered so far...
Is it going to be music or graphics-based? A story? A game?
The Scratch gallery at http://scratch.mit.edu might give you some ideas.
1.		
		

2.		
		

3.		
		
	

Now discuss your ideas with your teacher.
Once you have agreed on your project, describe what it will do below.
			
			
			
					
			
			
Design (Screen)
Make a storyboard of your project.
Your sketch should be labelled to show what is happening and what each sprite does.
	

	
	
	

		

Design (Code)
Design the steps for your code (algorithm):
· Think about the steps each sprite or the stage will have to perform. Write them in English.
· Think about variables your project will use.
	Sprite/Stage
	Algorithm

	
	

	
	

	Sprite/Stage
	Algorithm

	
	

	
	

· Think about variables your project will use.
	Variable name
	What it will store

	
	

	
	

	
	

	
	

	
	

	
	

Implement
Now create your project!
· Gather the sprites, costumes, sounds and backgrounds
Remember to give them sensible names.
· Then create the scripts
Make sure you have your algorithms in front of you!

Test
Test your project to make sure it works.
Let your classmates test it too and note their comments below:
		Good points: 	
			
		Bad points: 	
			

Describe bugs that were found (by you or by testers) and how you fixed them:
Bug: 		
Solution: 	
		
Bug: 		
Solution: 	
		

Document
Let’s imagine that you’re going to post your project on the Scratch website.
Write down below a brief description (50 words max.) of:
· your project’s main features and
· how to use them.
 Remember – you want to get people to try out your project!
	
	
	
	
	
	
	
	

Once you have written the description, enter it into your project’s notes (File→Project notes…).

Evaluate
How did the project turn out compared to how you originally planned it?
		
	
	

What mistakes did you make on the way?
	
	
	

If you were to start again from the beginning, what would you do differently?
	
	
	

Look at your code again.
Is there anywhere you could have taken a shortcut to make it “slicker”?
	
	
	

Maintain
What additional features would make your project better?
	
	
	
	
	
	

[bookmark: _Toc315615760][bookmark: _Toc315691557][bookmark: _Toc315706894][bookmark: _Toc315809798][bookmark: _Toc315809873][bookmark: _Toc315810108][bookmark: _Toc317522550][bookmark: _Toc317619939][bookmark: _Toc317620018][bookmark: _Toc317712867][bookmark: _Toc338687198]Congratulations
You have now completed this introduction to Computing Science in Scratch!
Remember that you can download and use Scratch at home, so there’s no need for this to be the end of your time as a programmer.
http://scratch.mit.edu

image3.jpeg
HEROYAL
SOCIETY

OF EDINBURGH

image4.jpeg
BI®=Y Academy
- of Computing

Chartered

Institute
for T

image5.wmf

image6.wmf

image7.wmf

image8.jpeg

image9.jpeg

image10.jpeg

image11.png

image12.jpeg

image13.png
(

image14.png
\ S)Y\ T
.f\)..@rﬂ,r
PSS I OIESS)

image15.jpeg

image16.png
Frére Jacques,
Frére Jacques

image17.wmf

image18.png
S S SR S e == =

Fre - re Jac-ques, Fre - re

Jac-ques, dor - mez vous? Dor - mez vous?

Stk

Sonnez les ma-ti - nes!

Sonnez les ma-ti - nes! Din, dan, don. Din, dan, don.

image19.wmf

image20.png
T —
M

image21.png

image22.png

image23.wmf

image24.png
~

move €0 steps
B

image25.png
10

0
0

10

image26.png
Edit Share Help

play sound HipHop | until done
repeat @
move € steps
(ot D mece]
move @D steps
[wait @8 secs
=

image27.wmf

image28.png
i

image29.png
MY N A BN, A AN

AL L | s san RERR

Hey, I've got a
joke for yout

image30.png
broadcast Scene2
[Uroncenss) ccenes J

image31.png

image32.png
[knock knocki (5]
[ooris L 5]
[Doris locked: That's why T knodkina A=)

image33.png
[1ho's there? L L5)
[Dariz whoz iia 3)
[SRoantkion =)

image34.png
when | clicked

For @ secs

Bsecs
say for @ secs

when | clicked

R for @ secs

Newsprite: (7 (2 (20

image35.png
when clicked

say for @) secs.

wait @ secs

say for @) secs

wait @ secs

C Do locked, that's why T knocking Rl s PId

image36.png
1

=

2oy [TLYYXGETH for) secs

o

oy EIERIYH for) secs.

o

say for @ secs

image37.png

image38.png

image39.png

image40.png

image41.png
~

key right a

pressed?

point in direction CIR
move @ steps

point in direction G

move @ steps

key up aro

pressed?

point in direction (8
move @ steps

point in direction
move @ steps

image42.wmf

image43.png

image44.png
4

PR

image45.wmf

image46.png
~

key right a

pressed?

point in direction CIR
move @ steps

+_|pressed?

point in direction CIR
move @ steps

point in direction
o (50T

point in direction
move @ steps

image47.png

image48.png

image49.png
~

key right a

pressed?

move @ steps,
point in direction CUM

move @ steps

point in direction GEIM

key up aro

pressed?

move @ steps,
point in direction (8

move @ steps,
point in direction

image50.png
~

key right a

pressed?

point in direction CIR
move @ steps

point in direction G

move @ steps

key up aro

pressed?

point in direction (8
move @ steps

point in direction
move @ steps

image51.png
point in direction CIM
o (50T

point in direction G

move @ steps

point in direction
o (50T

point in direction
move @ steps

~

image52.png

image53.png
repeat

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png
turn G) degrees

image60.png
point in direction CUM

set pen size to

pen down

image61.png

image62.png
move €0 steps
turn G) degrees

image63.png
repeat

(o)
[:20)

repeat

image64.png

image1.png

image65.png

image66.png

image67.png
(4]
move €I steps
turn & € degrees

image68.png
pen down

point in direction CUM
@

a
move €0 steps
turn G @) degrees

move €0 steps
turn G €0 degrees

pen down

image69.png

image70.jpeg

image71.png
Ed score

set score [to [
change Score by @
show variable Score

hide variable Score

image72.wmf

image73.png

image2.png

image74.jpeg

image75.wmf

